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Development of Source Apportionment Algorithms 
 

12. Using mass spectral source signatures to apportion exhaust particles from 
gasoline and diesel powered vehicles in a freeway study using UF-ATOFMS 

 

i. Introduction 
Many studies have shown that vehicle emissions represent a major source of 

pollution in urban areas (399-403). With growing concern over the health effects 
pertaining to pollution from vehicles (280,404,405), a goal of major federal and state 
agencies is to set regulations which will lead to a reduction of pollutants from these 
sources. The first step in this process involves distinguishing between the emissions from 
gasoline powered light duty vehicle (LDV), heavy duty diesel vehicle (HDDV), and other 
combustion sources in ambient aerosols which will allow state and federal air control 
agencies to quantify the relative contributions from the major pollution sources and 
develop effective control strategies. 

Several methods have been used for aerosol source apportionment using a variety 
of techniques.  Filter and impactor sampling methods, such as Micro Orifice Uniform 
Deposit Impactors (MOUDI), are useful in collecting particles that can be chemically 
analyzed using a variety of off-line techniques.  These techniques have proved useful in 
determining organic markers for various aerosol sources in the atmosphere 
(170,406,407).  On-line measurements are being used more and more for source 
apportionment.  Some of these instruments include Scanning Mobility Particle Sizers 
(SMPS), where particle source contributions are estimated based on the measured size 
modes of the particles (408-410).  Other on-line instruments, such as Thermal Desorption 
Particle Mass Spectrometers (TDPMS) and Aerosol Mass Spectrometers (AMS) have 
been used for particle source apportionment as well (411-413).  However, these thermal 
desorption techniques are unable to detect refractory components (such as inorganic 
compounds and elemental carbon), and they do not sample single particles.  Single 
particle techniques such as aerosol time-of-flight mass spectrometry (ATOFMS) provide 
an alternative method for source apportionment (87,414-416).  The ATOFMS uses a laser 
to desorb and ionize species from individual particles and thus can detect all chemical 
species (refractory and non-refractory) of each particle simultaneously with a dual 
polarity time-of-flight mass spectrometer (127,417).  An ultrafine aerosol time-of-flight 
mass spectrometer (UF-ATOFMS) was used in this study, because the majority of 
particles emitted in both LDV and HDDV exhaust are in the ultrafine size range 
(aerodynamic diameter (Da) < 100nm). 

The purpose of this study involves determining whether mass spectral signatures 
obtained from previous vehicle dynamometer characterization studies are representative 
of those detected in an area with fresh roadside emissions (37,418,419).  Logistically, a 
freeway-side location was chosen in a coastal “clean” environment so there would be 
little influence from sources other than vehicles.  Also, in such a location, the particles 
would be less aged which would “skew” the mass spectral signatures.  A major objective 
of this study is to test whether the ART-2a neural network clustering algorithm matching 
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method can be used to distinguish mass spectral signatures from very similar vehicle 
sources.  Finally, upon method validation, the goal is to apportion aerosols near the 
roadway and determine their overall contribution to the total ambient aerosol at the 
freeway location. 

ii. Experimental 
 This study was conducted in San Diego, California from Jul. 21-Aug. 25, 2004.  
The sampling site was stationed in a low-use parking lot during the summer on the UCSD 
campus directly adjacent to the I-5 freeway (GPS position 32°52’49.74”N 
117°13’40.95”W) with the sampling line within 10 meters of the freeway.  The site 
housed a suite of instruments including an UF-ATOFMS.  This same UF-ATOFMS 
instrument was used in two previous studies for the characterization of aerosols from 
LDVs and HDDVs (37,418).  A summary of the instrumentation operated at the site (that 
will be discussed in this paper) is provided in Table 15.  Meteorological stations were 
operated on each side of the freeway for complete wind trajectory information.  A digital 
Webcam was used for freeway traffic monitoring and recorded digital video continuously 
throughout the study.   

Traffic counts were determined by counting individual LDVs and HDDVs on 
both sides of the freeway for the first five minutes of each hour.  The number of vehicles 
counted in the first five minutes was multiplied by twelve in order to approximate the 
total LDV and HDDV counts for the entire hour.  The LDV fleet consisted primarily of 
newer vehicles (model year 2000 or newer), which was determined by routine traffic 
observations and from the video.  The HDDV fleet along this portion of the freeway was 
predominantly tractor trailers, with a much smaller contribution from buses and medium 
sized diesel delivery trucks. 

 

 
Table 15: List of instrumentation. 
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The particle mass spectra from the vehicles studies were previously analyzed and 
clustered with the ART-2a clustering algorithm as described in Sodeman et al and Toner 
et al (37,418).  The ART-2a algorithm and its use for single particle characterization are 
described in detail elsewhere (10,420).  ART-2a has been compared to other approaches 
(8) where it is shown that ART-2a yielded very comparable results to other clustering 
techniques including several variants of hierarchical clustering as well as K-means 
clustering.  For the PM emissions in vehicle studies, the ART-2a parameters used were a 
vigilance factor (VF) of 0.85, learning rate of 0.05, and 20 iterations.  The resulting mass 
spectral signatures (clusters) were used to apportion particles detected near the freeway 
using the same ART-2a algorithm, but using a matching approach.  The match-ART-2a 
function (YAADA v1.20 – http://www.yaada.org) uses existing ART-2a clusters as 
source “seeds” for the purpose of determining whether other particles match those seeds.  
In this case, ART-2a runs normal with prescribed particle clusters unable to be changed 
by the addition of new particles to each cluster.  Since the clusters do not change as 
particles are matched to them, this function allows the clusters to stay “true” to the 
original source signature.  Particles being considered in the matching are either matched 
exclusively to a particular cluster (above the VF) or not at all.  If a particle matches above 
the threshold for two or more clusters, it will be added to the one with which yields the 
highest dot product.  The VF used for match-ART-2a for this study is 0.85 which 
represents a very high VF.  If the dynamometer signatures are truly representative of the 
signatures from vehicles, this VF should be effective because the vehicle emissions are 
expected to be fresh near the freeway.  In a more aged environment, it is likely a lower 
VF will be necessary to match a reasonable number of particles.  The effect of varying 
VF for source matching is discussed in Appendix 2. 

The results obtained from match-ART-2a were compared to various peripheral 
data, to validate the results of the matching technique.  Such peripheral instruments are 
described in Table 15.  The outcome of these comparisons will be discussed below. 

iii. Results and Discussion 

a. Creation and Comparison of Particle Seeds From Source Studies 
As described in the Experimental section, the particles detected with the UF-

ATOFMS during the freeway-side study were analyzed via a matching version of the 
ART-2a algorithm.  The particle clusters used for matching (as the reference library) 
were obtained in previous LDV and HDDV dynamometer studies (37,418,419).  While 
the papers written on these studies refer to distinct particle classes, these classes are 
descriptive of the many (~100) ART-2a clusters resulting from the studies.  Since ART-
2a does not converge, these classes were grouped by running ART-2a and then regrouped 
using a function that combines resulting ART-2a clusters that match above a set vigilance 
factor (regrouped VF = 0.90).  These regrouped clusters can then be even further grouped 
based on visual inspection of the ion patterns.  Similar clusters that appear to belong 
within the same “class” as each other based on the presence or absence of key species 
(i.e. elemental carbon (EC), organic carbon (OC), sulfate, nitrate) are regrouped by hand.  
Such classes have minor differences in the relative ion peak patterns among their 
collective clusters, however; the overall chemical species making up each major type of 
cluster are the same. 
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For matching purposes, instead of using the combined weight matrices from the 
regrouped representative particle classes, the top ART-2a clusters that account for ~90% 
of the particles from each vehicle study were used.  Additionally, it was hypothesized that 
the top particle types detected in the vehicle studies should also be the top types detected 
in the fresh emissions near the highway.  In order to create source seeds more 
representative of the freeway environment, only particles generated during warm/hot 
engine conditions for both HDDV and LDV studies were used to make the source seed 
clusters.  These clusters still correspond to their representative classes described in 
previous papers (as stated earlier), however, there are minor differences in some clusters 
that make it more advantageous to use the separate ART-2a clusters for matching 
purposes.  In addition, clusters generated by running ART-2a on the UF-ATOFMS 
freeway detected particles were also incorporated into the source seed library.  The 
majority of these clusters were attributed to HDDVs, as their weight matrices correlated 
much better to the HDDV library source seeds than to the LDV seeds.  The seeds are also 
separated by size, where ultrafine (50–100nm) and accumulation mode (100–140nm & 
140-1000nm) mass spectral libraries have been created for each source.  This is done 
because there are distinct chemical differences for each source based on size, and these 
size ranges show the largest chemical distinctions.  For example, as found in the 
dynamometer studies using UF-ATOFMS, LDVs produce more organic carbon than 
elemental carbon particles for sizes above 100 nm.  Two separate libraries were made for 
the accumulation mode to compensate for a regional background elemental carbon 
particle type that was detected above 140nm during the freeway study.  This particle type 
will be discussed in a future publication (421).  For this manuscript, the matching results 
obtained from both accumulation mode libraries are combined to represent the UF-
ATOFMS accumulation mode results (100-300nm).  This was done because the trends in 
HDDV/LDV apportionment were found to be very similar between the two accumulation 
mode libraries once the regional background EC particles above 140 nm were identified 
as non-freeway particles.  Further details on the number of seeds in the vehicle source 
library and the frequency at which they match particles for this study are provided in 
Appendix 1.   

Since HDDVs and LDVs combust chemically similar fuels, it is important to first 
investigate the similarity between the HDDV and LDV exhaust particle types from the 
dynamometer source studies.  The first method used to compare these particle types 
involved taking the representative area matrix for each class described for each study and 
calculating the dot product between them.  The area matrices used to represent the 
particle classes are similar to the weight matrices that ART-2a yields except that the area 
matrices are not weighted.  The area matrices represent an average of all particles within 
a particular class.  Since ART-2a distinguishes particle types bases on their dot products, 
this type of comparison between the two studies allows one to determine if the area 
matrices of the general particle types would be distinguishable using ART-2a.  Figure 86 
displays a color mapped table of this comparison, with cooler colors (i.e. blue) indicating 
less similarity (lower dot product) and warmer colors (i.e. red) indicating more similarity 
(higher dot product).  The labels for the classes are based on the most abundant ion peaks 
in the mass spectra and are described in detail in previous source characterization 
manuscripts by Sodeman et al. and Toner et al. (37,418).  Figure 86 shows that some of 
the dot product comparisons between the two 
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Figure 86: Dot product comparisons of the representative area matrices between the general 
classes from the HDDV and LDV dynamometer experiments using UF-ATOFMS.  Classes are 
labeled in the same manner as in the manuscripts from Sodeman et al. 2005 and Toner et al. 
2006. 

source studies result in strong matches (i.e. orange and red colors).  As expected, those 
classes that match the best are chemically similar types; i.e. the EC, Ca, OC, Phosphate 
classes from HDDV matching to the EC-Ca-PO3 class from LDV (note this was produced 
by a smoking LDV).  Also, the OC, EC, Phosphate, and Sulfate classes from HDDV 
match to the OC-N class from LDV.  While these classes have dot products above the 
vigilance factor used for ART-2a analysis (VF = 0.85), they are visually distinct (as 
described in the two manuscripts) and still readily distinguishable using the matching 
procedure.  One of the major problems with this comparison is the fact that the area 
matrices represent an average of the particles within the class and are not weighted to the 
majority.  As stated previously though, the representative spectra of the general classes 
are not used for apportionment matching purposes.  Instead, the size segregated mass 
spectral libraries for HDDV and LDV particles, as described above, are used.  Using size 
information in the apportionment turns out to be quite important because those particles 
that are chemically similar between sources fall into quite different size ranges.   

Another method for comparing the two studies involves taking the particles from 
the dynamometer studies detected with the UF-ATOFMS and matching them to the 
HDDV/LDV reference library clusters using a non-exclusive matching process with 
ART-2a.  This process adds a matched particle to HDDV, LDV, or combination of both 
cluster types if the particle matches above a vigilance factor of 0.85.  This method of 
matching allows for determining the amount of similarity of the particle types between 
the two studies.  Between 19 – 33% of the HDDV dynamometer particles and 30 – 49% 
of the LDV dynamometer particles matched both the HDDV and LDV reference clusters.  
These results are shown in Figure 87.  With such a large degree of overlap between the 
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Figure 87: ART-2a matching error analysis using non-exclusive matching of HDDV and LDV 
dynamometer particles.  For each, the fraction of HDDV and LDV particles that matched to the 
HDDV, LDV, or both HDDV and LDV clusters from the HDDV/LDV reference library are 
shown for ultrafine (50–100nm) and accumulation (100–300nm) mode particles. 

particle types from both clusters, it would appear to be a challenging task to distinguish 
between HDDV and LDV particles using the ART-2a matching method.  This is not the 
case though as particles within the overlapping region turn out to be quite distinguishable 
for reasons described below. 

The main goal of this paper involves using ART-2a to distinguish between HDDV 
and LDV particles in an environment dominated by relatively fresh vehicle emissions.  
To accomplish this, an exclusive matching procedure was used where particles were 
matched to the HDDV/LDV reference clusters and they either matched exclusively or not 
at all.  If a particle matched to more than one cluster above the vigilance factor, it was 
placed in the cluster to which it matched the most closely (i.e. the highest dot-product 
value).  If a particle did not match to either HDDV or LDV, it was placed into the “other” 
category.  Particles falling into the “other” category included sea salt, dust, biomass 
burning, and other sources not related to LDV or HDDV exhaust emissions.  Quality 
assurance of this matching technique was carried out by using the same HDDV/LDV 
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cluster library to match to particles from the previous source studies.  The amount of 
error in matching was calculated based on the number of particles from the known source 
that matched to the incorrect source.  Figure 88 shows the matching fraction of particles 
from each study to the same HDDV/LDV reference library.  The most error 
(mismatching) is about 4%, which occurs for the larger accumulation mode particles 
from the LDV source particles matching to HDDV clusters within the reference library.  
Given this low error, this provides confidence in the ART-2a apportionment approach 
used in this study.  The errors associated with matching to the source seeds at varying 
VF’s, as well as results from using source seeds created at a lower VF, are discussed in 
Appendix 2. 

 

 
Figure 88: ART-2a matching error analysis using exclusive matching of HDDV and LDV 
dynamometer particles.  For each, the fraction of HDDV and LDV particles that matched to the 
HDDV or LDV clusters from the HDDV/LDV reference library are shown for ultrafine (50–
100nm) and accumulation (100–300nm) mode particles. 

b. Particles Detected that Match to HDDV/LDV Source Seeds 
The ART-2a algorithm was used to cluster the particles detected with the UF-ATOFMS 
during the freeway-side study using a VF of 0.85.  This approach creates the top particle 
types separately from the match-ART-2a technique to determine how closely the 
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resulting clusters compare with those from the vehicle studies.  Figure 89 (A-D) shows 
the representative ART-2a weight matrices (WM) /spectra from this analysis that match 
to the top particle types from the dynamometer studies.  The top particle classes from the 
HDDV and LDV vehicle source characterization studies were used for this comparison 
because they should theoretically be the top particle types seen in a vehicle dominated 
environment.  Indeed, this is the case, where the majority of the top ten freeway ART-2a 
results match to the top HDDV dynamometer classes.  The top HDDV particle type 
detected from the dynamometer studies is the top type detected during this freeway-side 
study (as shown in Figure 89A) and matches with an R2 of 0.97 when the m/z peak 
pattern and intensities are plotted against each other.  Figure 89B shows the second most 
abundant type from the HDDV dynamometer studies compared to the second most 
abundant type detected during the freeway study which matches with an R2 of 0.98.  This 
particle class is also the most abundant type detected in 100 – 400 nm particles detected 
with a standard inlet ATOFMS (419).  The spectra shown in Figure 89C represent the 
third cluster from the freeway ART-2a results which match the top LDV type from the 
dynamometer study with an R2 of 0.99.  The last 
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Figure 89: Weight matrices of the top particle types detected during freeway study that match to 
vehicle study signatures. 

spectra (Figure 89D) show the sixth freeway particle cluster that matches the third most 
abundant type from the LDV dynamometer study (R2 = 0.98).   
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There has been speculation as to whether mass spectral signatures from different 
sources obtained from laboratory and dynamometer experiments can be detected during 
ambient studies and used for source apportionment purposes.  Such questions result from 
the concern that the dilution and residence systems used during source characterization 
studies do not properly mimic real-world dilution and aging conditions that occur in on-
road driving exhaust (422,423).  The freeway-side study was chosen to lessen the effects 
of aging on the particle signatures.  It was expected that the “fresh” emissions would be 
more comparable to the particle signatures obtained from the dynamometer experiments.  
The high R2 values for the comparison of particle classes confirms the chemistry of the 
particle types detected in dynamometer studies are consistent with those produced in 
ambient environments.   

The high R2 values serves as further validation that the ART-2a clustering 
technique is a reliable method for ATOFMS particle mass spectral clustering.  A 
discussion of whether mathematical clustering algorithms can properly separate and 
cluster similar particle types has been addressed in the literature (6,414,424).  Some 
concerns about ART-2a have included that too low of a vigilance factor will yield a 
manageable number of end clusters, but will not distinguish between different types of 
particles.  Also, too high of a vigilance factor will yield too many clusters to properly 
classify all particles.  Through laboratory work conducted with ATOFMS data of known 
particle types, the proper vigilance factor for source apportionment using ART-2a has 
been found to be 0.85 (245).  While this tends to create many clusters for ambient data 
sets, the number is quite manageable because similar clusters can still be mathematically 
regrouped (which greatly reduces the number of clusters).  For example, in this freeway 
study 2,763 clusters were generated after running ART-2a (VF = 0.85) on fine mode 
particles, but mathematically regrouping these clusters using a VF of 0.90 reduces the 
number to 370 clusters (of which, the top 72 represent 90% of the total freeway-side 
particles detected with the UF-ATOFMS).  The R2 values obtained for these comparisons 
show that these techniques work very well and should lessen concerns about their 
legitimacy. 

c. Temporal Trends and Correlations with UF-ATOFMS Data 
A number of peripheral instruments accompanied the UF-ATOFMS instrument 

for this study to test the apportionment process being used.  Previous vehicle 
apportionment studies show that NOx emissions can be used as a tracer gas for HDDV 
emissions (425-427).  Also, an aethalometer measures absorptivity by particles and can 
be used as an indicator of elemental carbon (or soot) containing particles (particularly at 
λ = 880nm).  Indeed, previous HDDV and LDV source studies show more EC associated 
with HDDVs (37,418,419).  CO gas emissions have been shown to act as a tracer for 
LDV emissions (426); however, the CO monitor used in this study was not running 
during all the time periods.  Figure 90 (A,B) shows a plot of NOx vs. aethalometer data 
as well as HDDV counts (from video footage) vs. aethalometer.  The time periods for the 
two plots are different as the NOx monitor began later in the study.  However, the plot 
between the NOx and aethalometer (Figure 90A) show a good 
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Figure 90: Temporal plots of A) NOx gas data vs. aethalometer data; and B) HDDV video counts 
vs. aethalometer data.  Both NOx and aethalometer data show a good correlation with each other 
(R2 = 0.7).  The HDDV video counts also track the aethalometer data. 
 
correlation (R2 = 0.7), tracking for the remainder of the study, which suggests it is safe to 
assume that they most likely tracked during the time period before the NOx instruments 
arrival.  This correlation can allow the use of the aethalometer data trends as a surrogate 
for the NOx concentrations during periods when the NOx data were not available.  Figure 
90B shows the comparison of HDDV video counts versus the aethalometer trends.  The 
breaks in the counts come at night when there is insufficient light to properly distinguish 
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between vehicles.  The trends in HDDV counts versus aethalometer data also show a very 
strong correlation.  Since HDDV’s are shown to emit a larger mass of black carbon 
compared to LDV’s (428,429), it is expected that the HDDV counts should be closely 
correlated with the aethalometer data.  HDDVs make up about 2% of the fleet for this 
particular region of the freeway, and when HDDV traffic counts peak, there is generally a 
very large amount of LDV traffic as well.  Even though HDDVs make such a low 
contribution to the traffic on this stretch of freeway, their particle emissions are quite 
prevalent and readily discernable. 

Figure 91 and Figure 92 shows the time series of the ART-2a matching results 
for the fine and ultrafine mode particles, respectively.  Using the fractions from both the 
ultrafine and fine mode temporal plots, on average 83% of the aerosols detected near this 
roadside with the UF-ATOFMS are attributed to vehicle exhaust emissions, with 32% 
apportioned to LDV and 51% to HDDV emissions.  For the fine mode particles (Da = 
100–300nm), 66% of the aerosols are attributed to vehicle exhaust emissions, with 25% 
from LDV and 41% from HDDV.  And, for ultrafine particles (Da = 50–100nm), 95% of 
the aerosols are apportioned to vehicles, with 37% from LDV and 58% from HDDV.  
The fact that such a large number of particles in the roadside environment matched to the 
vehicle seeds using a relatively high vigilance factor (0.85) produces confidence that the 
seeds used in the source library are representative of a broad range of vehicles.  If a 
particular particle type had been missed in the seeds, it would be apparent in a large 
number of "other" particles.   

Figure 91 shows the ART-2a matching results for fine mode particles (Da = 100–
300nm) along with wind data and video traffic counts for July 24 to Aug 03, 2004.  This 
time period is of particular interest because MOUDI samplers ran at the same time and 
the source apportionment results from both approaches will be compared in a future 
study.  The plot of the unscaled matching counts shows that both wind and traffic counts 
play a major role in the particle concentrations for this site.  The matching counts peak 
around 9:00 each morning, which is when HDDV traffic counts peak. This also occurs 
just prior to, and during the beginning of daily peak wind speeds.  The sampling site was 
located on the east side of the freeway because the prevailing daily wind blows from the 
west (270o).  This allowed for the ideal positioning to detect freeway traffic exhaust 
particles.  The matched fraction and unscaled count plots show that there is a larger 
number of diesel particles detected (relative to LDV matched particles), which follow the 
trend in diesel traffic observed from the video footage.  It is interesting to note that the 
detection of LDV particles is always lower than that of HDDV particles for the fine 
particle mode.  This was expected, as roadside and ambient studies have shown that 
HDDV’s contribute a much higher concentration of particles even in LDV dominated 
areas (410,430-432).  Vehicle studies have also shown that HDDV’s emit a significantly 
higher fraction 
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Figure 91: Top: Wind data (blowing from: N = 0o/360o, E = 90o, S = 180o, W = 270o) along with 
LDV & HDDV traffic counts (from video). HDDV counts are multiplied by 20 to keep them on 
the same scale as LDV traffic counts. Middle: HDDV/LDV/Other ART-2a matching result 
unscaled counts from UF-ATOFMS data.  Bottom: HDDV/LDV/Other ART-2a matching 
fraction results from UF-ATOFMS data. Data shown are accumulation mode particles (Da = 100–
300nm) for July 24 to Aug 03, 2004. 
 
of fine particles compared to LDV’s (37,418,419).  Another note to make about Figure 
91 is that the temporal trend for the fraction of particles attributed to other sources has no 
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correlation with the fractions matched to HDDV or LDV.  This randomness of the 
accumulation mode “Other” type indicates that the particles within this class are not 
associated with either fresh HDDV or LDV emissions. 

Figure 92 shows the times series of the ART-2a matching results for ultrafine 
particles (Da = 50–100nm) along with SMPS data and video traffic counts for July 24 to 
Aug 03, 2004.  Traffic counts are shown on both Figure 91 and Figure 92 to allow for 
comparison.  This figure depicts how strong of a role the traffic counts play on the 
particle concentrations detected at this site.  Comparing the ultrafine unscaled matched 
counts to the SMPS data illustrates how well the UF-ATOFMS particle detection tracks 
the changes in particle concentrations at this site.  Since ultrafine particles provide an 
indication of freshly emitted particles, it was expected that the UF-ATOFMS ultrafine 
counts would track the SMPS data and the vehicle counts.  This figure also shows how 
strong an influence the LDV emissions, though still less than HDDV emissions, have on 
the ultrafine particle concentrations in this area versus the fine mode particles.  The 
fraction plot shows that there is a fairly consistent trend between the LDV and HDDV 
contribution to the ultrafine mode.  As was discussed for Figure 91 in reference to the 
fine particles, HDDV’s are known to emit a greater number of ultrafine particles in 
comparison to LDV’s (37,418,419).  Once again, this can account for the larger number 
of HDDV particles detected by the UF-ATOFMS than for LDV’s, despite the dominating 
LDV traffic counts.  Another note 
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Figure 92: Top: SMPS data along with LDV & HDDV traffic counts (from video). HDDV counts 
are multiplied by 20 to keep them on the same scale as LDV traffic counts. Middle: 
HDDV/LDV/Other ART-2a matching result unscaled counts from UF-ATOFMS data. Bottom: 
HDDV/LDV/Other ART-2a matching fraction results from UF-ATOFMS data. Data shown are 
ultrafine mode particles (Da = 50–100nm) for July 24 to Aug 03, 2004. 
 
to make about Figure 92 is that it clearly shows a difference in weekday versus weekend 
traffic and particle detection.  The first Saturday (7/24/04) had a high amount of traffic, 
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including HDDV traffic, and shows almost the same amount of matching contributions as 
the weekdays.  The first Sunday (7/25/04), as well as the following weekend show a 
reduced amount of HDDV traffic and, hence, a lower number of particles matching to 
HDDVs.  When HDDV traffic increased on the weekdays, the number of HDDV 
apportioned particles were much greater than those apportioned to LDV’s.  It wasn’t until 
Friday (7/30/04) that the LDV detected UF particle counts began to resemble those for 
HDDV’s, and they remained about even through the weekend.  Then, on Monday 
(8/02/04), the HDDV emissions began to dominate again.  Also, an interesting feature to 
note about Figure 91 & Figure 92 is that while the weekend LDV video counts remained 
relatively high (especially compared to the HDDV counts), the fraction of LDV and 
HDDV particles did not seem to change by the same magnitude.  The weekend HDDV 
fraction goes down by about 10% for the UF particles and 9% for the accumulation mode 
particles, while the LDV fraction goes up by 7% for the UF particles and 2% for the 
accumulation mode.  Also, the LDV apportioned counts go down despite the video traffic 
counts staying relatively high due to the fact that the winds were not as strong towards 
the site on the weekend as they were throughout the week. On 8/1, in addition to the 
winds not being as strong, they had more of an influence from the southwest and the east. 

Figure 93 shows correlation plots along with a temporal plot of particles matched 
to HDDV and LDV along with aethalometer data (λ = 880nm).  There is a stronger 
correlation between the aethalometer and the HDDV matched particles (R2 = 0.77) than 
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Figure 93: Time series of aethalometer data with HDDV/LDV apportioned particles.  The R2 
values for aethalometer to HDDV is 0.77, and 0.56 for the aethalometer to LDV. 
 

with the LDV matched particles (R2 = 0.56).  Aethalometers measure the absorptivity of 
particles in the UV to IR regions, and since HDDVs emit a larger number of elemental 
carbon than do LDVs, the trends of aethalometer data should reflect trends in HDDV 
exhaust particles.  Based on the trends of the NOx and aethalometer data with the 
ATOFMS data, the observed correlations provide support to the ART-2a apportionment 
approach used in this study.  The results presented in this paper represent the first step in 
using mass spectral source signatures acquired in LDV and HDDV dynamometer source 
characterization studies for ambient source apportionment.  As expected, a high 
percentage (83%) of the ultrafine and accumulation mode aerosols sampled near the 
freeway are attributed to vehicle exhaust emissions, with 32% and 51% being attributed 
to LDV and HDDV, respectively.  Future studies using different algorithms, including 
Hierarchical clustering and Positive Matrix Factorization, will be performed and the 
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results will be compared to those obtained in this study.  Also, comparisons will be made 
between single particle source apportionment results and standard organic tracer methods 
(433).  Such comparisons will be necessary for determining the most appropriate method 
for performing source apportionment using single particle mass spectral data.   
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